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Introduction

With the rise of super-metropolises, significant population growth has been accompanied by
an increasing need for mobility. The ecological challenges associated with transportation modes
pose a major issue for policymakers. Among the proposed solutions, this study focuses on a
particularly promising option : bike-sharing systems. These systems, requiring minimal space
and offering unmatched flexibility, are attracting a growing number of users for daily commutes.
In this context, we analyze the dataset "projet.csv" to gain insights into the bike rental process.
The goal is to develop a predictive model capable of anticipating demand, thereby avoiding bike
shortages. In our case, it is preferable to slightly overestimate the number of required bikes ra-
ther than risk a shortfall, which could compromise user satisfaction.
The dataset comprises 1,817 observations characterized by environmental and temporal mea-
sures, detailed as follows :

— saison : Winter, Spring, Summer, Autumn.
— météo : Clear, Cloudy/Foggy, Rain/Snow.
— humidité : Air humidity rate (percentage).
— vent : Wind speed (km/h).
— température1 : Average measured temperature (°C).
— température2 : Average perceived temperature (°C).
— mois : From 1 (January) to 12 (December).
— jour_mois : From 1 to 31 (day of the month).
— jour_semaine : From 1 (Sunday) to 7 (Saturday).
— vacances : 1 if the day is during holidays, 0 otherwise.
— jour_travail : 1 if the day is a workday, 0 otherwise.
— horaires :

— 1 : From 0 :00 to 7 :00,
— 2 : From 7 :00 to 11 :00,
— 3 : From 11 :00 to 15 :00,
— 4 : From 15 :00 to 19 :00,
— 5 : From 19 :00 to 24 :00.

— vélos : Number of bike rentals.
Quantitative variables are displayed in italics, while qualitative variables are in bold. This
dataset will serve as the foundation for constructing a reliable predictive model based on these
variables.
It is clear that weather and seasonal conditions play a crucial role in the decision to use a bike,
but which variables are truly significant ? For instance, summer and spring days with sunny
skies, moderate temperatures (neither too hot nor too cold), low wind, and low humidity levels
are logically more conducive to bike use than days with less favorable weather conditions.
Similarly, peak hours — from 7 : 00 to 11 : 00 and 15 : 00to19 : 00 — are expected to have hi-
gher demand than off-peak hours. Additionally, holidays, when more people are likely to engage
in leisure activities, appear to be another significant factor. However, it is hypothesized that
variables such as the day of the week or the month may not significantly impact bike rentals,
as regular users tend to maintain consistent habits across weeks and months.
To validate these hypotheses, we will conduct a systematic data analysis. This will begin with
an examination of the quantitative (humidité, vent, température1, température2 ) and qualita-
tive (saison, météo, mois, jour_mois, jour_semaine, jour_travail, vacances, horaires) variables
to identify explanatory variables and those to be explained. Outlier detection will also be per-
formed.
We will analyze correlations between variables to better understand their interactions. Different
linear models will then be compared to identify the one that best meets the goals defined above.
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Finally, the performance and limitations of the selected final model will be thoroughly analyzed.

1 Data Analysis

In this section, we will focus on analyzing the variables and their potential correlations.
First, we will transform the quantitative variables in the dataset into factors to make them
usable for our analysis and readable by R.
Next, we will separately study the quantitative and qualitative variables. For the quantitative
variables, we will examine their distribution, existing correlations, and potential transformations
to apply, using common functions such as the square root or squared power.
For the qualitative variables, we will analyze their distribution as well as potential correlations
between them.
Finally, we will detect the outliers present in the data and discuss whether it is more appropriate
to remove them or keep them in the dataset.

1.1 Data Preprocessing

After importing our data, we first checked its quality by looking for missing values (NA) in
the columns and any potential duplicate rows. This verification showed that no missing values
or duplications were present, confirming the initial integrity of the data.
Next, we examined the types of variables (quantitative or qualitative) to ensure their format
was suitable for analysis. We also used the summary function to get an overview of the main
characteristics of our variables, such as descriptive statistics (mean, median, minimum, maxi-
mum, quartiles) for quantitative variables, and the distribution of modalities for qualitative
variables.
This preliminary step allowed us to better understand the data distributions, identify potential
anomalies, and lay the groundwork for further stages of the analysis.

1.2 Study of Quantitative Variables

1.2.1 Distribution of Variables

We visualized the histograms of the quantitative variables by setting the number of bins to
30, which provided a detailed representation of their distributions (see Figure 1).
We decided to add transformations of the variables using common functions such as the ex-
ponential, logarithm, square root, and squared power. However, for the variables température1
and température2, we could not apply logarithmic and square root functions because the values
of these variables can be negative.
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Figure 1 – Histogram of the distribution of quantitative variables

Based on this visualization, we formulated an initial hypothesis regarding the distribution
followed by our target variable, vélos. Since the support of this variable is N, it is likely that it
follows a Poisson distribution or a Negative Binomial distribution, both of which are commonly
used for discrete counting data.
We will confirm and precisely define the distribution followed by vélos in section 2.2 : Choice
of the distribution for vélos .

1.2.2 Correlation between Quantitative Variables

To analyze the correlations between the quantitative variables, we used the corrplot func-
tion to generate a graphical matrix of correlations (see Figure 2), making it easier to identify
strong or weak relationships between the variables. We observe a logical relationship between
the variables and their transformations, but further investigation into this relationship is not
necessary. However, we also note a correlation between température1 and température2, which
is an expected relationship given the definitions of measured and felt temperature.

We then deepened the analysis by performing a Pearson test to validate the correlation
between température1 and température2, getting a p-value of < 2.2 × 10−16, (see Figure 3).
This confirms a significant correlation between these two variables. The strong redundancy
between them implies that a choice will need to be made to retain only one of the models. We
will justify this decision in section 2.3 : Model Selection.
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Figure 2 – Correlation Plot of the Qualitative Variables

Figure 3 – Pearson Test for température1 and température2

Finally, using the pairs plot (see Figure 4), we visualized the linear relationships between
the different variables, providing a better understanding of the potential links and dependency
patterns within the data.
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Figure 4 – Pairs Plot of the Quantitative Variables

1.3 Study of Qualitative Variables

Once the analysis of the quantitative variables was completed, we proceeded with the ana-
lysis of the qualitative variables. We used boxplots to visualize the distribution of velos based
on the different qualitative variables (see Figure 5). These plots allowed us to identify the
variables that appear to have a significant impact on the target variable. Based on these vi-
sualizations, we selected the following variables as potentially important for predicting velos :
horaires, jour_mois, mois, saison, vacances, and meteo.

Figure 5 – BoxPlot of the Qualitative Variables

To go further, we conducted chi-square tests to evaluate the probability of observing the
distribution differences between the categories, assuming that these variables are independent
in the distribution process. The tests were carried out for the variables saison, meteo, and mois,
and the results are presented below, see Figure 6.
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Figure 6 – Chi-square test of the Qualitative Variables saison, meteo and mois

These tests allowed us to validate the hypothesis of an association between the variables
météo, mois, and saison.

1.4 Outliers Detection

Once the analysis of all our variables was completed, we proceeded with the analysis of
outliers using boxplot for the quantitative variables.

Figure 7 – BoxPlot of the Qualitative Variable highlighting Outliers

During this analysis, we identified outliers for the variables humidite, vent, temperature2 as
well as their transformations, totaling 152 outlier values (see Figure 8). After careful considera-
tion, we decided to remove all the outliers for these variables. This choice is justified by the fact
that humidity percentages close to 0 are extremely rare and are generally encountered in ex-
tremely dry areas such as the Sahara or Death Valley, where the use of bike-sharing is virtually
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nonexistent. Additionally, cycling under wind speeds of at least 55km/h becomes dangerous, so
we also chose to remove these observations. For the variables derived from transformations, we
removed the observations where the value was outside of [Q1−1.5∗(Q3−Q1);Q1+1.5∗(Q3−Q1)],
where Q1 and Q3 are the 0.25 and 0.75 quantiles of the variables.

Figure 8 – Outlier Verification Output and Removal

2 Model Creation and Comparison

Now that we have prepared and cleaned our data, we can begin constructing several models
and comparing them to select the one that best meets our objectives.
First, we will discuss the train/test split method for the dataset, which is essential for evaluating
the performance of our models on unseen data. We will then discuss the model comparison
criteria we covered in class, to eliminate irrelevant variables.
After that, we will incorporate interactions between variables in our models to identify those
that truly add value to the prediction. This step will help us better understand the combined
influence of certain variables.
Finally, we will justify the choice of the final model, explaining its relevance and validity. We
will also provide a detailed interpretation of the estimated regression coefficients to understand
the role of each variable in predicting bike-sharing demand.

2.1 Data Split

Using the rsample library, we split our dataset into two subsets : the train set, representing
80%, and the test set, containing the remaining 20%.

2.2 Choice of the Distribution vélos

Before beginning the model selection, we must choose the correct distribution for our vé-
los variable among : the Poisson distribution, the Negative Binomial distribution, and the
Gaussian distribution. We created three complete models using the glm() and glm.nb() func-
tions on our data_train set. By comparing the AICs of the three full models and selecting the
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smallest, we chose the Negative Binomial distribution (see Figure 9).
We also performed a dispersion test to validate our choice : this test evaluates whether a statis-
tical model, such as a Poisson or Negative Binomial regression model, exhibits overdispersion.
Overdispersion occurs when the variance of the data is larger than what the model assumes.
The p-value < 2.2e−16 confirms that overdispersion is present in the model’s residuals.
Finally, by directly calculating the mean and variance of the vélos variable, we confirm our final
choice of distribution : we will definitely use the Negative Binomial distribution.

Figure 9 – Output of AIC comparisons, Dispersion test and the Mean and the Variance of
the Variable to be explained

2.3 Model Selection

The first model built includes only the quantitative variables to identify those that signi-
ficantly explain our target variable : the number of vélos. To do this, we used ANOVA Type I
and Type II tests, which allowed us to confirm the choice of relevant variables. After analysis,
we retained the following variables based on their p-values being below 5% :

— temperature1
— temperature1_square
— humidite_square
— humidite_sqrt
— humidite
— vent
— vent_square

Next, we added the qualitative variables identified as interesting in section 1.3 : Study of
Qualitative Variables. These variables include :

— mois
— saison
— horaire
— météo
— vacances
— jour_mois

The ANOVA tests allowed us to remove some irrelevant variables : vent_sqrt, jour_mois, jour_travail
and jour_semaine.
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Then, we performed model selection using the AICStep function with the forward, backward,
and bothward approaches. All three methods converged to the same optimal model, with the
minimal AIC. This final model includes the following variables :

— horaire
— mois
— météo
— température1
— saison
— température1_square
— humidité_square
— vacances
— humidité
— vent

2.4 Addition of Interactions

Once the variables were selected, we needed to test the interactions between them. Many
trials were performed to calculate the AIC of different models, while keeping the issue of over-
fitting in mind.
Thus, for each combination of variables and their potential interactions, we fitted several statis-
tical models. The primary goal was to identify the best combination that minimizes the AIC,
while ensuring that overfitting was avoided, as it could compromise the model’s ability to ge-
neralize.
Additionally, we performed first order ANOVA tests (using the anova function in R) to retain
only the significant interactions. This step helped reduce model complexity while ensuring the
relevance of the selected interactions.
To do this, we followed an iterative approach : after each adjustment, we compared the per-
formance of the models using criteria such as the AIC, but also by examining the residuals
and calculating the Mean Squared Error score, which we will discuss further in section 3.1 :
Predictions and Mean Square Error . Models that were too complex, despite having a low AIC,
were discarded if they showed signs of overfitting.

2.5 Final Model

2.5.1 Choice and Validation of the Model

After adding, testing, and comparing the possible interactions among the selected variables,
we get the following final model :

— horaire
— mois
— meteo
— temperature1
— saison
— température1_square
— humidité_square
— vacances
— humidité
— vent
— horaire : température1
— température1_square : mois
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We performed an LRTest between the final model and the final model without interactions. The
p-value was < 5% (see Figure 10), so we retained the model with interactions as the definitive
model.
We computed the dispersion ratio based on the Pearson residuals and got a value of 0.99, which
is close to 1. This indicates that the model does not exhibit overdispersion or underdispersion.
Additionally, we plotted the histogram of the deviance residuals, which exhibits a pattern closely
resembling a Normal distribution (see Figure 11).

Figure 10 – LRTest on the final models with and without interactions

Figure 11 – Histogram of the deviance Residuals

2.5.2 Interpretation of Estimated Regression Coefficients

We can thus write the mathematical equation of our model. Since the distribution of the
response variable is a negative binomial distribution, the canonical link function is the log
function.
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We have :

ln(E[velos]) = β0 +
5∑

i=2

βhorairei · horairei +
12∑
j=2

βmoisj · moisj +
3∑

k=2

βmeteok · meteok

+βtemperature1 · temperature1 +
4∑

l=2

βsaisonl
· saisonl + βtemperature1_square · temperature1_square

+βhumidite_square · humidite_square + βvacances2 · vacances2 + βhumidite · humidite + βvent · vent

+
5∑

i=2

βhorairei:temperature1 · (horairei · temperature1)

+
12∑
j=2

βmoisj :temperature1_square · (moisj · temperature1_square)

We can interpret the coefficients from the summary as follows :
— β0 is the intercept of the model.
— βtemperature1 represents the effect of the variable temperature1.
— βtemperature1_square represents the effect of the variable temperature1_square.
— βhumidite_square represents the effect of the variable humidite_square.
— βhumidite represents the effect of the variable humidite.
— βvent represents the effect of the variable vent.
— The terms βhorairei represent the effects of the different levels of the time slot variable,

with i = 2, . . . , 5, and 1 being the reference level.
— The terms βmoisj represent the effects of the different levels of the mois variable, with

j = 2, . . . , 12, and 1 being the reference level.
— The terms βmeteok represent the effects of the different levels of the meteo variable, with

k = 2, . . . , 3, and 1 being the reference level.
— The terms βvacancesl represent the effects of the different levels of the vacances variable,

with l = 2, and 1 being the reference level.
— The terms βhorairei:temperature1 represent the interactions between the temperature1 and

horaire variables, with i = 2, . . . , 5, and 1 being the reference level.
— The terms βmoisj :temperature1_square represent the interactions between the temperature1_square

and mois variables, with j = 2, . . . , 12, and 1 being the reference level.
We get the following estimations of the coefficients :
— β̂0 = 4.1688 : Represents the logarithm of the expected number of bikes when all the

explanatory variables (and interactions) are at their reference level.
— β̂horaire2 = 1.6137 : Means that the logarithm of the expected number of bikes increases

by 1.6137 (or approximately +400% in exponential terms) for time slot 2 compared to
time slot 1.

— β̂mois5 = 0.5272 : Means that for month 5 (Mai), the logarithm of the expected number
of bikes is higher by 0.5272 (or approximately +69%) compared to month 1 (January).

— β̂meteo3 = 0.4136 : Weather condition 3 (Pluie/Neige) decreases the logarithm of the
expected number of vélos by 0.4136 (or approximately −33%) compared to weather
condition 1.

— β̂temperature1 = 0.0509 : For each additional degree Celsius of the measured average tempe-
rature, the logarithm of the expected number of bikes increases by 0.0509 (approximately
+5%).

— β̂humidite = 0.0101 : An increase of 1 unit of humidity leads to an increase of 0.0101 in
the logarithm (approximately +1%).
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— β̂horaire2:temperature1 = 0.0157 : For time slot 2, each additional degree Celsius decreases
the logarithm of the expected number of bikes by 0.0157.

— β̂mois5:temperature1_square = 0.0028 : In May (month 5), each additional unit of the square
of the température1 increases the logarithm of the expected number of vélos by 0.0028.

3 Performance and Limitations of the Final Model

In this section, we will begin by calculating the Mean Square Error (MSE) score and plotting
the binnedplot based on our model predictions to demonstrate the performance of the final
model. Next, we will categorize the predictions to facilitate the interpretation of results and
to assess both prediction quality and accuracy. Finally, we will discuss the limitations of the
model and potential improvements. It is important to note that in our case, overestimating the
number of vélos is preferable to underestimating it.

3.1 Predictions and Mean Square Error

The first step is to predict the number of vélos using our final model on the test dataset.
This dataset is also used to compute the confidence intervals for our predictions. We use the
following formula to calculate the MSE :

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

Our model produces an MSE around 45000 vélos2, leading to a Root Mean Square Error (RMSE)
around 215 vélos. Since the RMSE is significantly lower than the actual mean (693.4317), this
indicates that the model is relatively accurate. Considering that our model is intended for
general estimations rather than highly precise predictions, this level of error is acceptable.
Additionally, the confidence intervals allow us to quantify the uncertainty of the predictions,
providing further insight into the model’s reliability.
Moreover, given that the goal of the model is to support decision-making where overestimation
is less problematic than underestimation, the observed error patterns align with our practical
needs. We can state that our model is biased by about 200 vélos on average.

3.2 Evaluation of Model Performance

To evaluate the performance of the final model, we compared the null deviance and the
deviance of our model with summary. The deviance of our model is significantly lower than the
null deviance. This indicates that our model provides a better fit than the null model.
Then, we divided our variable vélos into three categories : Low, Mid, and High affluence. These
categories are defined as follows : below 200 vélos for the Low category, between 201 and 650
vélos for the Mid category, and above 651 vélos for the High category. The last category is
significantly broader because our model struggles to accurately predict a high number of vélos,
an issue we will revisit in 3.3 : Model limitations and improvements. Using these categories, we
computed the confusion matrix (see Figure 12).
We first analyze the accuracy score, as it provides a global assessment of the model’s per-
formance, ensuring it behaves correctly in most cases. With an accuracy of 83%, the model
demonstrates strong reliability for decision-making purposes.
Next, we focus on the recall score, which measures the model’s ability to correctly identify all
positive cases (in this context, critical or underestimated predictions). A high recall is particu-
larly important as it reduces the risk of underestimating the number of vélos, which could result
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in service shortages. For the Low category, the model achieves a recall of 90%, while the Mid
and High categories exhibit scores of 77% and 86%, respectively. These results highlight the
model’s strong performance, particularly in detecting low and high-affluence scenarios, while
indicating room for improvement in the Mid category.

Figure 12 – Confusion Matrix for the vélos ’s categories
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Finally, we display the barplot of our observed categories (see Figure 13), as well as the plot
of the predicted vélos versus the actual numbers (see Figure 14). In the High category, we ob-
serve significantly larger confidence intervals, which can be attributed to the model’s difficulty
in accurately predicting a large number of vélos.
The plot also shows greater dispersion in predictions for higher values, indicating that the mo-
del struggles to perfectly capture large counts. However, if this overestimation remains within
an acceptable margin (e.g., within a high confidence bound), they are preferable to underesti-
mations, as they ensure the system can adequately respond to high demand for vélos.

Figure 13 – Barplot of the predictions observed by categories

Figure 14 – Plotting predictions against the actual number of vélos
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3.3 Model Limitations and Improvements

As defined earlier, our model tends to overestimate the predicted number of vélos rather
than underestimate it. However, it struggles to predict very high numbers of vélos, leading to
significantly larger confidence intervals in the binnedplot (see Figure 16) for high prediction
values.
Moreover, a larger dataset with more observations of high vélos counts would allow us to adjust
the model and reduce prediction errors. Additionally, we could focus on making new predictions
for values close to the profiles of outliers to better understand the final impact of such cases.
Future improvements could involve refining the model to reduce prediction variance while main-
taining its conservative bias. Investigating whether external factors, such as weather anomalies
or seasonal effects, could explain the observed outliers in the predictions would also be a valuable
avenue for further research.

Figure 15 – Final distribution of our model

Figure 16 – Binnedplot of the residuals
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Conclusion of the Analysis

Our study of the projet.csv dataset was carried out in three major phases. First, we explored
and processed the data to ensure its readiness for analysis. This phase involved transforming
variables into usable formats and studying their behavior with respect to the target variable,
vélos, as well as their interrelationships. Outliers were identified and removed based on clear
justifications, ensuring a cleaner and more reliable dataset for modeling.
Second, we developed and compared multiple predictive models to identify the most effective
one. This process began with the selection of an appropriate distribution for the target va-
riable. We then adopted an iterative approach, constructing models step by step : starting with
only quantitative variables, followed by the inclusion of qualitative variables, and ultimately
incorporating interactions between variables. Each step was carefully validated to optimize the
model’s predictive performance.
Finally, we evaluated the chosen model by thoroughly analyzing its accuracy and limitations.
To this end, we validated its predictions, created new categories to better assess its perfor-
mance, and visualized its limitations through comparisons of predicted values against actual
observations. This analysis revealed a model that aligns with the specific approach of our study :
favoring overestimation to avoid critical shortages in service, particularly during periods of high
demand. While this conservative approach may sacrifice precision in certain cases, it ensures
a robust safeguard against underestimations that could disrupt service reliability. This aligns
with the overarching goal of maintaining continuous and reliable access for users, even in sce-
narios of high demand.
Nevertheless, the model does exhibit limitations in accurately predicting extreme values, parti-
cularly in high-demand cases. Addressing these issues would require a larger dataset, especially
with more observations of peak usage patterns, to refine its precision. Additionally, the model
shows a systematic bias of approximately 200 bikes, which remains reasonable given the maxi-
mum observed number of bikes : 2,036. Future iterations of the model could focus on reducing
this bias while maintaining the conservative approach to avoid underestimation.
This model offers significant potential for practical applications. Policymakers, municipalities,
urban planning authorities, and bike rental companies could leverage its insights to optimize the
planning and installation of new bike-sharing stations. It can also aid in monitoring the number
of bikes in circulation on existing networks, identifying demand trends, and ensuring proper
allocation of resources. Furthermore, the model could support decisions related to scaling ope-
rations, maintaining equipment, or replacing bikes as needed. Ultimately, this study provides
a solid foundation for enhancing urban mobility strategies. By ensuring that bike-sharing ser-
vices can expect and respond to demand fluctuations, this model contributes to building more
sustainable, efficient, and user-focused transportation systems. As cities continue to evolve, this
tool could become a critical asset in addressing the challenges of modern urban mobility.
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