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1 Introduction
Breast cancer remains the leading cause of cancer-related death in women: in 2020 the World
Health Organization recorded 2.3 million new cases and 685 000 deaths. The prognosis depends
largely on early detection; yet the reference imaging techniques (mammography and ultrasound)
require costly, often overstretched equipment whose sensitivity varies with age and breast density.
Blood-borne biomarkers are easy to assay and minimally invasive, therefore, offer a promising
trigger for earlier targeted imaging.
All the graphics and numerical results aswell as the corresponding code are to be found at the
following github depository: https://github.com/ErwanR123/breast-cancer-detection

1.1 Dataset and Variables

The study draws on the Breast Cancer Coimbra dataset, containing the clinical records of 116
women patients followed at Coimbra University Hospital in Portugal. Nine biomarkers were
measured for each patient; their clinical rationale is summarized in Table 1.

Table 1: Blood biomarkers and clinical rationale
Biomarker Rationale

Age Incidence rises almost exponentially with age owing to accumu-
lated mutations and diminished immune surveillance.

BMI In post-menopausal women, overweight status is linked to higher
tumour risk and poorer prognosis.

Glucose Chronic hyperglycaemia correlates with greater tumour aggress-
iveness.

Insulin Elevated fasting insulin (insulin resistance) is associated with in-
creased breast-cancer risk.

HOMA Captures metabolic imbalance more finely than insulin alone; high
values accompany obesity and heightened risk.

Leptin Serum leptin is typically raised in breast-cancer patients and may
mark disease progression.

Adiponectin Low levels are often an independent risk factor and may exert a
protective effect.

Resistin High levels correlate with aggressiveness and metastasis, indicat-
ing systemic inflammation.

MCP.1 Raised serum MCP-1 links to macrophage tumour infiltration and
poorer prognosis.

These variables are the features The target variable Classification= 1 denotes histologically
confirmed cancer; 0 otherwise.

1.1.1 Type of machine learning

Here the model will train on labeled data to learn mappings from inputs to outputs. Futhermore
here the dataset D is represented as :

D = {((Xi, Yi)}N
i=1

where
Xi ∈ R9, Yi ∈ {0, 1}

June 2025 3



1.2 Project Goals 4

Hence, we face a supervised binary classification Our task is to find

f̂ : R9 −→ {0, 1}

that maximizes positive-case detection.

1.2 Project Goals

1. Detect the vast majority of truly affected patients.
2. Identify the most discriminative biomarkers to inform clinical practice and guide sub-

sequent biological work.
3. Systematically compare methods (bias, variance, interpretability, data requirements) and

recommend a model suitable for hospital deployment.

1.3 Modelling Methods

Why test several model families? The Breast Cancer Coimbra data set is small (N = 116
patients, d = 9 biomarkers). The underlying biological mechanisms may be simple (quasi-linear
relationships) or complex (non-linear interactions, threshold effects). Evaluating a range of
algorithms therefore serves three purposes:

• Probe different assumptions about the mapping R9 → {0, 1}, from strict linearity to
highly non-linear decision surfaces;

• Compare bias, variance and interpretability, gauging how each model balances over-
fitting and explanatory power;

• Select the most stable and clinically useful solution once performance is assessed
on an independent test set.

To span interpretable linear to flexible non-linear approaches, we tested:
K-Nearest Neighbours. Non-parametric; captures complex decision boundaries. Sensitive to

scaling and dimensionality. Optimal k chosen via cross-validation.
Penalised logistic regression. Readable coefficients; supports class weighting and variable

selection. Assumes a log-linear link between standardised biomarkers and log-odds.
Gaussian Naïve Bayes. Very low variance; effective on small samples. Assumes conditional

independence and normality.
Shallow neural network (MLP). It explores the potential non-linearity among biomarkers,

while the constrained architecture and early stopping help curb overfitting on this small
dataset.

Method comparison at a glance

Together, these four approaches cover a spectrum from a highly interpretable linear model
(penalised logistic regression) to a non-parametric learner (k-NN), via a generative classifier
(Naive Bayes) and a more flexible multilayer perceptron. Their comparative performance on the
held-out test set (accuracy, F1-score and AUC-ROC) allows us to select the solution that offers
the best trade-off between sensitivity, interpretability and robustness for the intended
clinical application.
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2 Modeling methods

2.1 Data processing and analysis

Before proceeding with any modeling phase, it is essential to preprocess the dataset to make it
readable and suitable for use with various predictive methods. This preprocessing step allows us
to: identify the variables, detect any missing values, understand their behavior and distribution,
and assess their influence on the target variable. These insights will help guide the selection of
the most appropriate predictive models to apply.
Not all of these steps are required for every model, and some may vary slightly to ensure
compatibility between the dataset and each specific algorithm. Any such differences will be
detailed at the beginning of each modeling approach.

2.1.1 Data import and preliminary exploration

Dataset overview

The dataset contains a total of 116 observations and 10 variables, including:
• 9 continuous explanatory variables: Age, BMI, Glucose, Insulin, HOMA, Leptin,

Adiponectin, Resistin, and MCP.1.
• 1 target variable: Classification, which takes the value 2 if the patient has cancer

(positive class) and 1 otherwise (negative class).
There are no missing values in the dataset, allowing us to proceed directly with the exploratory
analysis.

Model Bias Variance Interpretability Main interest
k-NN low moderate (↑ with

small k)
medium (nearest
neighbours)

detect complex fronts

Naive Bayes high
(strong
assump-
tions)

very low good (means / σ) ultrafast probabilistic
baseline

Logistic Regres-
sion

medium low–moderate excellent (coeffi-
cients)

clinically standard, tun-
able threshold

MLP low higher low probes non-linear gain

Table 2: Complementary strengths of the four modelling families.
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2.1 Data processing and analysis 6

Variable distribution

Figure 1: Histograms of variables

The Classification variable is not balanced:
• Class 2 (cancer): 55.2%
• Class 1 (healthy): 44.8%

The distribution of the variables was examined using histograms (cf 1). Several variables, in-
cluding Insulin, HOMA, Leptin, Adiponectin, Resistin, and MCP.1, show a strong asymmetry
with extreme values. This may justify applying data transformations (logarithmic scaling or
normalization) prior to model training, in order to enhance model performance and stability.
In addition, the Classification variable is imbalanced, with 55% of the patients classified as sick
(value 2). This imbalance is important to consider, as it directly affects the choice of evaluation
metrics. Relying solely on accuracy would not be sufficient to assess model quality in this
context.
We will now prepare the data for training by separating the explanatory variables (features)
from the target, and performing a stratified split of the dataset into training and test sets.

2.1.2 Stratified train-test split

June 2025 6



2.1 Data processing and analysis 7

We began by separating the features from the target variable (Classification), recoding the latter
to facilitate result interpretation:

• 1: patient with disease (positive class),
• 0: healthy patient (negative class).

A stratified train-test split was performed using the train_test_split function from scikit-learn,
ensuring that the original class distribution was preserved in both the training and test sets.
This is particularly important in the present case, given the observed class imbalance.
The resulting dataset sizes are as follows:

• Training set: 92 observations
• Test set: 24 observations

This corresponds to a standard 80% / 20% split. This ratio split are not the same for all the
modeling methods.

2.1.3 Visualising feature distributions by class in the training dataset

To better understand the differences between patients with the disease (Class 1) and healthy
patients (Class 0), we visualised the distributions of explanatory variables segmented by class.
Three complementary types of plots were produced: histograms, boxplots, and jittered scatter
plots.

Histograms by Class

Figure 2: Histograms by class (before transformation)

June 2025 7



2.1 Data processing and analysis 8

Histograms (cf 2) allow us to observe the distribution of values within each class. Several
variables exhibit noticeable shifts between the two groups, in particular:

• Age: patients with the disease tend to be slightly older on average.
• Resistin, MCP.1, and Adiponectin show density shifts between classes, suggesting

potential discriminative power.
• In contrast, variables such as BMI and Leptin exhibit strong overlap across classes.

These qualitative observations indicate that some variables may hold predictive value, but none
alone offers a clear class separation.

Boxplots by Class

Figure 3: Boxplots by class (before transformation)

Boxplots (cf 3) provide a more precise visual assessment of distributional differences:
• Most variables display high dispersion and numerous outliers in both classes, notably

Insulin, Leptin, and MCP.1.
• While medians are generally close between groups, some trends are visible (higher Resistin

levels in Class 1).
These patterns suggest significant intra-class variability, which may impact the performance of
models that are sensitive to non-standardised feature scales.

June 2025 8
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Jittered Scatter Plots

Figure 4: Jittered scatter plots by class (before transformation)

These plots (cf 4) make the vertical separation between classes (0 or 1) explicit:
• No single variable is sufficient to clearly separate the classes.
• Some patterns emerge (low values of Insulin, HOMA, and Adiponectin are associated

with Class 0), although significant overlap remains.
Overall, these visualisations support the idea that class separation may only be achieved through
multivariate modelling rather than univariate thresholds.

Descriptive statistics by class

To complement the visual inspection of variable distributions, we computed descriptive statistics
separately for each class (healthy vs cancer) to numerically assess the differences in feature
distributions.
Healthy patients (class 0):

• Mean Glucose: 87.8, Insulin: 7.3, HOMA: 1.63, Resistin: 11.6
• Standard deviations are relatively high for most variables (e.g., Insulin: 5.35, Leptin:

20.24), indicating substantial within-group variability.
Cancer patients (class 1):

• Mean Glucose: 106.7, Insulin: 11.8, HOMA: 3.36, Resistin: 16.6

June 2025 9
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• The distributions tend to be more dispersed (e.g., std for Glucose: 25.5 vs 9.8 in class 0)
and show higher mean values across most metabolic variables.

These descriptive differences confirm and reinforce the trends observed in the histograms: class
1 patients tend to have higher values for glucose metabolism markers (Glucose, Insulin, HOMA)
and inflammatory indicators (e.g., Resistin). The combination of elevated mean values and
strong variability highlights the importance of careful feature scaling and transformation prior
to modeling.

Summary of the Exploratory Analysis

The exploratory analysis suggests that several variables hold partial discriminative power, but
their individual effect is limited. Combining them within a multivariate model will likely be
necessary to capture relevant interactions.
We observed substantial skewness and outliers in variables such as Insulin, HOMA, Leptin, and
MCP.1, particularly within the cancer group. These distortions justify:

• Applying logarithmic transformations to reduce skewness and stabilize variance,
• Standardising all features to account for differences in scale before model training.

Descriptive statistics by class also confirmed the trends seen in visualizations: patients with
cancer tend to have higher values of metabolic markers (e.g., Glucose, Insulin, Resistin) and
more dispersion, suggesting a more heterogeneous profile.
Finally, the strong overlap between classes in most variables indicates that linear separation may
be insufficient, motivating the consideration of non-linear models in subsequent analyses.
These findings provide a clear rationale for the preprocessing steps and modeling choices adopted
in the next sections.

June 2025 10



2.1 Data processing and analysis 11

2.1.4 Correlation matrix and scatter plot matrix (training dataset only)

To detect potential redundancies and anticipate multicollinearity issues, we analysed the linear
relationships between explanatory variables using two complementary tools: the correlation
matrix and the scatter plot matrix. All analyses in this section are based solely on the training
dataset to avoid any form of data leakage.

Correlation Matrix

Figure 5: Correlation matrix (X_train)

The Pearson correlation matrix (cf 5) helps identify linear dependencies between continuous
variables. Key findings include:

• A very strong correlation between Insulin and HOMA (ρ ≈ 0.93), which is expected since
HOMA is a deterministic function of insulin and glucose:

HOMA = Glucose × Insulin
405

• Moderate correlations observed between:
– Glucose and HOMA (ρ ≈ 0.70),

June 2025 11



2.1 Data processing and analysis 12

– BMI and Leptin (ρ ≈ 0.60).
• Most other variable pairs exhibit relatively low correlations (ρ < 0.4), suggesting that the

features are largely non-redundant and provide complementary information.
These observations justify the potential use of dimensionality reduction techniques (e.g., PCA)
or regularization methods when using models that are sensitive to collinearity, such as logistic
regression.

Coloured Scatter Matrix

Figure 6: Colored scatter matrix (X_train)

The scatter plot matrix (cf 6), coloured by class (Classification), provides a global view of
pairwise variable interactions and visual insight into class-specific groupings.

• Blue points represent patients with cancer (class 1), and red points represent healthy
individuals (class 0).

• Significant overlap is observed between the two classes in most 2D projections.
• A few variable pairs such as (Resistin, MCP.1 ) or (Adiponectin, HOMA), suggest partial

separation, though not sufficient for clear discrimination.

Conclusion of this step

The analysis reveals limited linear separability between the two classes based on individual or
pairwise variables. While some features are correlated, most offer distinct contributions to the
dataset.
These findings motivate the use of multivariate models capable of capturing complex or non-
linear relationships. Moreover, given the heterogeneous scales and presence of strong correlations
(e.g., HOMA and Insulin), standardization will be essential prior to modeling.

June 2025 12



2.1 Data processing and analysis 13

We now proceed to the data preprocessing stage, starting with standardization, before imple-
menting and evaluating various supervised learning methods.

2.1.5 Logarithmic transformation

The initial exploratory analysis revealed strong right-skewed distributions for several variables,
including Insulin, HOMA, MCP.1, and Resistin. These variables exhibited extreme values that
could negatively affect the performance of certain machine learning models (logistic regression, k-
NN), which are known to be sensitive to magnitude discrepancies and deviations from normality.
To make these distributions more symmetric and reduce the impact of extreme values, we applied
a logarithmic transformation of the form log(x + 1) using the np.log1p function.

Before and After Transformation Comparison

June 2025 13



2.1 Data processing and analysis 14

For each transformed variable (cf 2.1.5), we compared the distribution before and after trans-
formation using histograms.

• The long right tails were significantly reduced.
• The resulting distributions became more compact, less skewed, and in many cases closer

to a Gaussian shape.
• This improves the homogeneity of the data set and facilitates subsequent standardization

steps.
These visual comparisons clearly illustrate the benefit of the logarithmic transformation.

Dataset Update

The transformed variables (Insulin_log, HOMA_log, MCP.1_log, and Resistin_log) were added
to the dataset, and the original versions were removed to prevent redundancy.

Effect of transformation on class-separated distributions

To evaluate the impact of the transformation on class-wise distributions (healthy / diseased),
we reproduced several visualizations using the transformed features:

Figure 7: Histograms by class (after transformation)

June 2025 14



2.1 Data processing and analysis 15

Figure 8: Boxplots by class (after transformation)

Figure 9: Histograms by class (after transformation)

• Histograms by Class These histograms (cf 7) display the relative density within each class
after transformation. Variables such as Insulin_log and Resistin_log still show class-specific
differences in density, but their distributions are much more regular.

June 2025 15



2.1 Data processing and analysis 16

• Boxplots by Class (cf 8) The logarithmic transformation clearly reduces the impact of
outliers visible in the boxplots. Medians become more representative, and interquartile ranges
are tighter and more stable.

• Jittered Scatter Plots These visualizations (cf 9) confirm that vertical class separation
(0 / 1) is preserved, while the horizontal distribution becomes more controlled (an advantage
for distance) based models.

Conclusion

The application of a logarithmic transformation has:
• Reduced the influence of extreme values,
• Stabilised variance across variables,
• Improved the geometric structure of the dataset for standardisation and learning purposes.

These transformations represent a key step in the preprocessing pipeline prior to model con-
struction.

2.1.6 Standardisation (StandardScaler)

After applying a logarithmic transformation to the skewed variables, we performed standardiz-
ation on all explanatory variables in the training dataset. The goal of this step is to bring all
features onto the same scale by centering them around zero and scaling them to unit variance.
Standardization is particularly important for models that are sensitive to differences in scale or
distance, including:

• logistic regression (for more stable convergence),
• k-nearest neighbors (k-NN),
• regularization methods (Ridge, Lasso).

Method

The transformation used is the classic Z-score standardization, defined as:

X
(i)
scaled = X(i) − µ(i)

σ(i)

where µ(i) and σ(i) denote the mean and standard deviation of variable X(i) computed from the
training set.
We used StandardScaler from scikit-learn, applying it only to the training data using
fit_transform, in order to avoid data leakage.

June 2025 16



2.1 Data processing and analysis 17

2.1.7 Preparation of X_test

The transformations previously applied to the training set (logarithmic transformation + stand-
ardization) must be reproduced identically on the test set, without re-estimating any parameters.

Steps performed:
• Logarithmic transformation using log(x + 1) on the same variables: Insulin, HOMA,

MCP.1, and Resistin;
• Removal of the original (raw) variables to avoid redundancy;
• Standardization using the same parameters (µ, σ) learned from X_train, applied via

scaler.transform().
We also verified that the columns in X_test_scaled exactly match those in X_train_scaled
(both in names and order) to ensure compatibility with downstream learning models.
This step completes the preprocessing pipeline and allows us to move forward with supervised
modeling.

June 2025 17



2.2 Modeling with Logistic Regression 18

2.2 Modeling with Logistic Regression

For this first modeling step, we train a simple logistic regression model without explicit
regularization, on the preprocessed dataset. The preprocessing pipeline included a logarithmic
transformation of skewed variables and a standardization of all features to ensure comparability
in scale.
This method assumes a linear relationship between the log-odds of the target and the explanatory
variables. Since the dataset contains no missing values, and a moderate number of observations
(n = 116), logistic regression is a natural starting point.

Why this method?
• Explainable linear model: coefficients are interpretable and quantify the effect of each

biomarker.
• Well–suited to small datasets: the model estimates only d + 1 parameters.
• Compatible with regularization: L1 (sparse selection) and L2 (shrinkage) will be

explored later.

Results on the Test Set

After training the model on the standardized training set, we evaluated it on the test set (n = 24
observations). The results are as follows:

• Recall: 0.692
• F1-score: 0.750

Analysis

The results indicate a reasonable trade-off between recall and precision, which is particularly
important in a medical context. The model correctly identifies both healthy and sick patients,
but still misses a few cancer cases (false negatives), which is a critical concern.
This is reflected in the F1-score of 0.75, which captures this balance. Its use is especially ap-
propriate given the moderate class imbalance (55.2% vs 44.8%), as relying solely on accuracy
would be misleading in this context.
As this is a non-regularized model, it does not yet account for multicollinearity or perform
automatic feature selection. These aspects will be addressed in the next step through regular-
ization and hyperparameter tuning.

2.2.1 Cross-validation of the logistic regression model

To evaluate the stability of the logistic regression model and its generalization capacity, we
perform a k-fold cross-validation (here, k = 5) on the training dataset. This procedure provides
a more robust estimate of model performance by reducing sensitivity to the specific train-test
split.

Evaluation protocol We monitor two key performance metrics:
• F1-score, which balances precision and recall, particularly suitable for imbalanced data-

sets;
• Recall, which measures the true positive rate, crucial in medical diagnosis where missing

a positive case can be critical.
Cross-validation is performed using the cross_val_score function from scikit-learn, applied
to the standardized and log-transformed training set (X_train_scaled, y_train).
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2.2 Modeling with Logistic Regression 19

Cross-validation results
• Mean F1-score: 0.808 ± 0.071
• Mean Recall: 0.805 ± 0.084

These values provide a global estimate of the model’s baseline performance prior to any regu-
larization or tuning.

Analysis The observed standard deviations (≈ 0.07–0.08) reflect a moderate variability in
performance between folds. This is expected due to:

• the limited training sample size (n = 92),
• the imbalance in class distribution,
• the absence of regularization in this baseline model.

These findings motivate the exploration of:
• Regularization techniques (L1 or L2),
• More complex models (e.g., nonlinear classifiers).

Figure 10: Scores by fold (F1-score and Recall) from 5-fold cross-validation

This figure displays the F1-score and Recall obtained on each fold. It confirms that:
• There is no catastrophic failure on any fold,
• Both metrics remain in acceptable ranges (≈ 0.7–0.9), showing reasonably consistent

performance.

This step establishes a reliable baseline for model performance before exploring improvements
via hyperparameter optimization or regularized variants.

2.2.2 Hyperparameter Optimization (GridSearchCV)

To improve the generalization performance of the logistic regression model, we perform a grid
search using GridSearchCV to identify the best combination of hyperparameters. The objective
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2.2 Modeling with Logistic Regression 20

is to find the optimal regularization strength (C) and penalty type (l1 or l2) that balance
underfitting and overfitting, while enhancing model interpretability and robustness.

Hyperparameter grid tested The following configurations were evaluated via 5-fold cross-
validation on the training set:

• Penalty type (penalty):
– ’l1’: Lasso regularization, encouraging sparsity,
– ’l2’: Ridge regularization, penalizing large coefficients.

• Regularization strength (C): 10 values sampled on a logarithmic scale from 10−2 to
104. Smaller C implies stronger regularization; larger C reduces penalty.

• Solver: ’liblinear’, which is compatible with both ’l1’ and ’l2’ penalties in scikit-learn.
The F1-score was used as the selection criterion, as it balances precision and recall, which is
especially relevant in the presence of class imbalance.

Grid search results
• Best hyperparameters: {’C’: 4.64, ’penalty’: ’l2’, ’solver’: ’liblinear’}

• Best mean F1-score (5-fold CV): 0.814

Interpretation The selected model uses a moderate L2 regularization (C ≈ 4.64), which
limits overfitting while retaining all features. This results in a dense model that preserves full
interpretability and avoids zeroing out coefficients. Importantly, the fact that the optimal C
lies well within the search range (and not on the boundaries) confirms that the model benefits
from controlled regularization.

This tuning step provides a meaningful improvement over the baseline model trained without
hyperparameter optimization.

Expected impact The optimized model will next be evaluated on the test set to determ-
ine whether the observed gain in cross-validation translates into a real generalization im-
provement. If confirmed, this would validate the value of hyperparameter tuning, even for
interpretable linear models such as logistic regression.

2.2.3 Evaluation of the Optimized Logistic Regression Model

After selecting the best logistic regression model through cross-validation, we now assess its
generalization performance on the independent test set, which remained untouched during
training and hyperparameter tuning.

Objective

The goal is to evaluate whether the optimized model, after regularization (L1 or L2), improves
over the baseline logistic regression in terms of:

• Recall : sensitivity to detecting cancer patients,
• F1-score : balance between recall and precision,
• Discriminative ability : assessed via the ROC curve and AUC.

Performance on the Test Set

• Recall: 0.692
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2.2 Modeling with Logistic Regression 21

• F1-score: 0.750
These values confirm the model’s ability to balance sensitivity and precision, despite a moderate
class imbalance. No significant gain is observed compared to the baseline model. The overall test
results remain comparable to those of the baseline model, suggesting that regularization
had limited impact in this context, possibly due to the small dataset size or the already good
calibration of the initial model.

Confusion Matrix

Figure 11: Confusion matrix of the optimized model on the test set

• 9 true positives and 9 true negatives were correctly identified,
• 4 cancer cases were missed (false negatives), which is a critical risk in medical dia-

gnosis.
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2.2 Modeling with Logistic Regression 22

ROC Curve and AUC

Figure 12: ROC curve – Optimized logistic regression

The model achieves an AUC (Area Under the Curve) of 0.79, indicating good discriminative
ability. On average, the model assigns a higher probability to patients with cancer than to
healthy patients in 79% of the cases. The ROC curve lies significantly above the diagonal,
confirming the model’s utility for clinical decision-making.

Conclusion

The optimized model demonstrates a robust trade-off between performance and inter-
pretability:

• L2 regularization reduces overfitting by penalizing large coefficients,
• Good test performance: F1-score = 0.75, AUC = 0.79,
• Balanced recall and precision,
• Interpretable coefficients valuable in medical applications.

However, performance remains comparable to the unregularized model. This suggests that
regularization had limited marginal benefit in this setting, likely due to the small sample
size. More complex or non-linear models (e.g., SVMs or tree-based methods) may be required
to improve predictive accuracy.

2.2.4 Comparison of Logistic Regression Variants

We now compare the two logistic regression models developed previously:
• A simple model, trained without hyperparameter tuning (default penalty=’l2’, C=1.0);
• An optimized model, trained via cross-validation using L2 regularization and C = 4.64.

The comparison includes: test set performance, ROC curves, learned coefficients, predicted
probability distributions, and individual-level error analysis.
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2.2 Modeling with Logistic Regression 23

Overall Performance on the Test Set

Model Recall F1-score AUC
Simple LogReg 0.692 0.750 0.783
Optimized LogReg (L2, C=4.64) 0.692 0.750 0.790

Both models achieve identical recall and F1-score, confirming a similar balance between
sensitivity and precision. The optimized model exhibits a slightly higher AUC (+0.007),
indicating a marginal gain in discriminative ability.

ROC Curve Comparison

Figure 13: ROC Curve comparison: simple vs optimized model

As shown in Figure 13, the ROC curves are nearly identical. The optimized model reaches
an AUC of 0.790 compared to 0.783 for the baseline model, confirming a minor but consistent
improvement.
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Coefficient Comparison

Figure 14: Comparison of learned coefficients

Figure 14 shows that L2 regularization shrinks the coefficients without enforcing sparsity:
• Insulin_log and HOMA_log are slightly reduced but not eliminated;
• Glucose and BMI remain strong predictors in both models.

This reflects the role of L2 regularization in promoting model stability without discarding
features.

Predicted Probability Distributions

Figure 15: Distribution of predicted probabilities (class 1)

As illustrated in Figure 15, the distributions are broadly similar. However, the optimized model
yields more polarized predictions (closer to 0 or 1), suggesting increased confidence in clas-
sification decisions.
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Error Analysis by Case

Index True Label Simple LogReg Optimized LogReg
111 1 0 0
104 1 0 0
95 1 0 0
38 0 1 1
7 0 1 1
58 1 0 0

Table 3: Examples consistently misclassified by both models

Most predictions are consistent across both models. The examples above are misclassified
identically by both classifiers. This suggests that the remaining errors are not due to model
instability or overfitting, but likely reflect ambiguous cases or class overlap in the feature space.
Such consistency strengthens confidence in the stability of both models.

Final Remarks

Model Key Strength
Simple LogReg Simpler, slightly faster to train
Optimized LogReg (L2) Greater robustness, improved generalization

• Both models yield equivalent predictive accuracy on the test set (same recall and
F1-score).

• The L2-regularized model is preferable when stability, generalization, or coefficient
shrinkage is desired, especially in the presence of multicollinearity.

• Although the AUC gain is modest (+0.007), the optimized model confirms the benefit of
regularization and hyperparameter tuning.

• The limited gain observed here may stem from the small dataset size or the already
strong calibration of the baseline model.
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2.3 Modeling with Gaussian Naive Bayes

Why this method?
• Very low variance: the estimators µj , σj are stable even on a small sample, so the model

hardly overfits.
• Instant training & reference quality: provides a quick yard-stick score.
• Clinically understandable: class-wise means and variances have direct biomedical

meaning.
The data of the features is continuous and non-binary. As such, we use a GaussianNB, the per-
formance will nevertheless suffer as the features aren’t all Normal distributed and the dimension
is rather small, we cannot suppose normal distribution through size. As with previous models,
the data is first transformed using a logarithmic function, followed by standardization, to ensure
consistency in preprocessing. But here we do a standard 70/30 split on the data.

Model evaluation

Because of its simplicity and without a real fit in law, the GaussianNB is unlikely to produce good
results. In order to maximise the performance, we want to know if a logarithmic transformation
is useful.

2.3.1 Model Evaluation with logarithmic transformation

A stratified split was used to preserve the original proportion of healthy and sick patients in
both the training and test sets. This ensures that the model is not trained with a dominant
class, which could bias the learning process.
The resulting dataset sizes are:

• Training set: 81 observations
• Test set: 35 observations

This corresponds to a standard 70/30 split.

Confusion Matrix with logarithmic transformation

Figure 16: Confusion Matrix with transformation
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2.3.2 Model Evaluation without logarithmic transformation

Confusion Matrix without logarithmic transformation

Figure 17: Confusion Matrix without transformation

We want to maximise the recall, even if it might compromise the accuracy: it is more important
to find every sick patient than every healthy one. In our case, the model doesn’t mark enough
people as sick: only 11 out of the 19 sick patients are identified as such (58%). (cf 17). However,
without the logarithmic transformation, the model performance is downright horrible: the recall
is worse than tossing a coin (47.4%). This illustrates the impact the logarithmic transformation
of the data can have on model performance.
This gives us the following ROC-curve:

Figure 18: ROC curve
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2.4 Modeling with k-Nearest Neighbours

Why this method?
• Non-parametric: makes no functional assumption; if the biomarkers naturally form

“clouds” of healthy vs. cancer cases, k-NN will pick them up.
• Small data set friendly: with N = 116 and d = 9, storing all points and computing

distances is inexpensive.
• Interpretable: the clinician can be shown which similar patients motivated the predic-

tion.
• Baseline: if a sophisticated model cannot beat k-NN, preprocessing or feature engineering

must be revisited.
Here there is no assumptions about the underlying data distribution so or the Data processing
and analysis we just check the missing values and change the label on the target variable. We
also do a train/test split 70%/30% and a stadardisation: Feature scaling is important for k-NN,
as it is a distance-based algorithm and is sensitive to the scale of the features. This means that
if some features have significantly larger ranges than others, they can dominate the distance
computation and negatively affect the quality of the predictions. Therefore, scaling ensures that
all features contribute equally to the distance metric.

No curse of dimension

• Number of samples: 116
• Number of features: d = 9
• Number of classes: 2

Therefore, the number of features d is small enough to ensure that we are not affected by the
curse of dimensionality.

2.4.1 Model construction

Cross-Validation to find the optimize K nearest neighbor

In k-NN classification, to achieve the best prediction performance, we need to find the optimal
number of neighbors k that maximizes the evaluation score of our models. Here, we use the
f1_score from sklearn.metrics, as it provides a good balance between precision (e.g., correctly
predicting a sick patient as sick, or a healthy patient as healthy) and recall (e.g., correctly
identifying sick patients among all those predicted as sick).
To determine this hyperparameter, we apply a 5-fold cross-validation strategy. We chose 5 folds
instead of 10 due to the limited amount of data, as this provides a better balance between the
sizes of the training and validation sets.

Figure 19: Cross validation

After cross-validation, we find that the optimal number of neighbors is k = 23. (cf 19)
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2.4.2 Model Evaluation

Confusion Matrix

Figure 20: Confusion Matrix

Receiver Operating Characteristic

Figure 21: ROC Curve

In this optimized k-NN classification, we aim to maximize recall while maintaining good accur-
acy, in order to minimize the number of misclassifications, particularly cases where a sick patient
is incorrectly predicted as healthy (cf 20). This objective is crucial in medical diagnosis, where
false negatives can have serious consequences.
We achieve this goal with a recall of 91.6% and an accuracy of 79.1% (cf 21).
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2.5 Modeling with Shallow Neural Network (MLP)

Why this method ?
• Captures non-linearities: can learn interactions such as Insulin × BMI or threshold

effects.
• Compact architecture: 16-8-1 (< 500 weights) is trainable without over-parametrising

this small data set.
• Performance ceiling check: if the MLP fails to improve on logistic regression, a linear

model is sufficient.
For the data processing and analysis phase, we assume that all features are statistically inde-
pendent of one another. Although this assumption is rarely strictly true in practice, it simplifies
the modeling process and is commonly made in many machine learning pipelines.
We begin by loading the dataset and performing an exploratory data analysis (EDA) to examine
the distribution of each variable, detect any missing values, and understand the data types
involved. This step helps assess data quality and informs the choice of preprocessing techniques.
Next, we preprocess the target variable by converting its categorical labels into binary numerical
values, which is necessary for compatibility with classification algorithms.
Finally, we apply feature scaling through standardization to ensure that all variables contribute
equally to distance-based algorithms (e.g., k-NN) and to facilitate faster and more stable training
of neural networks. Standardization transforms the features to have zero mean and unit variance.

Stratified K Fold

Figure 22: Loss evolution across each fold
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In the context of binary classification using the Breast Cancer Coimbra dataset, preserving the
class distribution when splitting the data is a crucial condition for ensuring the validity of the
experimental results.
Use of stratify=y in train_test_split. When splitting the dataset into training and test
sets, we use the train_test_split function from the scikit-learn library. To ensure that the
proportions of the target classes are preserved in both subsets, the stratify=y argument is
specified.
This precaution is particularly important in cases of imbalanced datasets, as is the case here,
where the two classes of the target variable ("Classification") are not equally represented. Simple
random sampling could lead to a significant imbalance in the test set, making performance
metrics unreliable and potentially biasing the model toward the majority class. The stratify=y
option therefore ensures the statistical representativeness of both classes in each subset.
Use of StratifiedKFold for cross-validation. Similarly, during model evaluation by cross-
validation, we use the StratifiedKFold method. Unlike standard KFold, this method maintains
the class distribution within each of the k folds.
The goal is to obtain a more robust and stable estimate of model performance, particularly in
the presence of class imbalance. Preserving the dataset’s original structure in each fold reduces
the risk of overfitting or underfitting due to folds dominated by a single class.
Statistical Justification. Maintaining class distribution during sampling procedures is a
standard requirement in statistics, grounded in the principle of sample representativeness. In
supervised classification, the systematic use of stratified methods enhances the external validity
of results (i.e., the model’s generalization capability) while reducing the variance of performance
estimates obtained through cross-validation.

2.5.1 Model Construction

Neural Network Architecture

We chose to build a shallow neural network composed of two hidden layers. This architecture
provides sufficient capacity to model moderately complex relationships in the data, while limiting
the risk of overfitting associated with deeper networks.
The ReLU (Rectified Linear Unit) activation function is applied to the hidden layers to introduce
non-linearity and enable the network to learn complex patterns. For the output layer, we use
the sigmoid activation function, which is suitable for binary classification tasks as it produces
outputs in the range [0, 1], interpretable as class probabilities.
To reduce the risk of overfitting, we apply L2 regularization (also known as weight decay) to the
dense layers. This technique penalizes large weights during training, encouraging the model to
learn simpler and more generalizable solutions.
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Figure 23: Learning curve

2.5.2 Model Evaluation

Model Performance and Training Behavior

Figure 24: Confusion Matrix

When training the neural network on the Breast Cancer Coimbra dataset, the model achieved
an F1-score of 0.69, and more importantly a recall of 0.92. However, we recognise that the
model has a clear tendency to mark patients as sick, thus a precision of merely 0.55. A notable
behavior observed during training is that the validation loss (val_loss) mostly remains lower
than the training loss (train_loss) (cf 23). This phenomenon is primarily due to the use of L2
regularization, which penalizes the model’s weights during training but not during validation,
leading to artificially higher training loss values. Additionally, the small size of the dataset, the
application of class weighting to address class imbalance, and the use of early stopping may
contribute to this gap.
Such behavior is not problematic as long as validation performance remains stable and satisfact-
ory, which is the case here. The F1-score confirms that the model prioritizes recall—an essential
metric in medical diagnosis, where minimizing false negatives is critical.
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3 Conclusion

3.1 Comparison Criterion: Mathematical Formula

For a rigorous comparison of the classification methods, we rely on the following formulas for
the positive class:

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN)

Precision = True Positives (TP)
True Positives (TP) + False Positives (FP)

F1-score = 2 × Precision × Recall
Precision + Recall

These metrics are particularly well-suited for a medical context where:
• Recall (sensitivity) must be maximized to avoid missing actual diseased patients.
• Precision must remain reasonably high to limit unnecessary follow-up tests on healthy

individuals. However, in this context, false positives are acceptable, because it’s better to
identify a potentially ill patient even if the medical test ultimately comes back negative.

• The F1-score balances both, giving a single performance measure.

3.2 Results

The table below summarizes Precision, Recall, and F1-Score (positive class) for each method on
the same test set (24 observations):

• Logistic Regression (L2)
– Precision: 0.818 (9 TP, 2 FP)
– Recall: 0.692 (9 TP, 4 FN)
– F1-Score: 0.750

• Gaussian Naïve Bayes
– Precision: 0.846 (11 TP, 2 FP)
– Recall: 0.579 (11 TP, 8 FN)
– F1-Score: 0.68

• k-Nearest Neighbors (k = 23)
– Precision: 0.73 (11 TP, 4 FP)
– Recall: 0.916 (11 TP, 1 FN)
– F1-Score: 0.788

• Shallow Neural Network (MLP)
– Precision: 0.55 (12 TP, 10 FP)
– Recall: 0.92 (12 TP, 1, FN)
– F1-Score: 0.69

3.3 Comparison of the Four Methods

Considering only recall and F1-score:
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• k-NN (k = 23) achieves the highest recall (0.920) and the highest F1-score (0.788). It
misses only one diseased patient (1 false negative out of 13), making it ideal for maximizing
detection of positive cases.

• Gaussian Naïve Bayes is the worst of the tested models and doesn’t perform well,
neither when it comes to recall nor when it comes to F1-score. The precision is good but
less relevant medically than the recall.

• Logistic Regression (L2) has an F1-score of 0.750, yet its recall (approximately 0.69) is
substantially lower. It correctly identifies 9 diseased patients out of 13, placing him behind
k-NN and MLP in terms of recall.

• MLP has an F1-score of 0.69,and an impressive 0.92. It correctly identifies all the diseased
patients except one, but but it labels lots of healthy patients as sick patients, placing him
behind Naïve Bayes, Logistic regression and k-NN as last place in terms of precision.

Overall, if one accepts a high number of false positives and wants primarily a high recall with
a solid F1-score, k-NN (k = 23) is the most appropriate model on this dataset.

3.4 Conclusion for the Clinic

Under the assumption that false positives are acceptable in favor of maximizing recall and F1-
score:

• k-NN (k = 23):
– Recall of 0.92, only one diseased patient missed out of 12.
– F1-score of 0.788, the best recall-F1 balance.

This model should be chosen if capturing nearly all positive cases is the primary goal, even
at the cost of many healthy patients being falsely flagged.

• MLP:
– Recall around 0.92, 1 diseased patient missed.
– F1-score of 0.69, the model has a tendency to mark every subject as positive. Not a

good compromise from a performance level.
• Logistic Regression (L2):

– Recall around 0.69, the model misses 4 diseased patients out of 13.
– F1-score of 0.750, acceptable but lower than k-NN.

• Gaussian Naïve Bayes:
– Recall of 0.579, eight diseased patients missed.
– F1-score of 0.68, inferior to k-NN in terms of F1.

Logistic regression and NB are less suitable when the main objective is to maximize de-
tection, since their recall is too low compared to k-NN and MLP.

In conclusion, under the scenario where false positives are negligible compared to the need to
minimize missed diagnoses, k-NN (k = 23) stands out as the optimal choice, ensuring a recall
of 0.920 and an F1-score of 0.788.“‘

3.5 Improvement

Even though k-NN appears optimal under our “recall and F1-priority” scenario, several aven-
ues can further enhance sensitivity and F1-score: one could explore Advanced Non-Parametric
Methods, such as for example SVM (Support Vector Machine)
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